


GF705

MagnetoResistive Magnetic Field Sensor

The GF705 is a magnetic fi eld sensor based on the multilayer Giant MagnetoResistive (GMR) effect. The Sensor contains a Wheatstone bridge with on-chip flux concentrators to improve the sensitivity. The sensor is ideal for measuring magnetic fi elds in a linear range from 1.8 mT up to 8 mT.

A typical application is endpoint detection through a cylinder of stainless steel: A moving magnet inside a thick-walled cylinder is detected by a GF705 sensor from the outside.

The GF705 is available as bond version (bare die) and as flip-chip or LGA-package or vertical package for SMD assembly.

Product Overview

Article description	Package	Delivery Type
GF705ACA-AB 1)	Bare Die	Waferbox
GF705APA-AB	Flip-Chip	Tape on reel (5000)
GF705AMA-AE	LGA6S	Tape on reel (2000)
GF705AMS-AS	SIL4-D	Tape on reel (tbd.)
GF705 Evalboard	Evalboard	ESD-Box

¹⁾ minimum order quantities apply.

Quick Overview

Symbol	Parameter	min.	typ.	max.	Unit
V_{CC}	Supply voltage	-	5.0	-	V
B _{Lin}	Linear magnetic range	1.8	-	8.0	mT
S	Sensitivity (in linear range)	8	10	13	mV/V/ mT
R _B	Bridge resistance	4.0	5.0	7.0	kΩ

Absolute Maximum Ratings

The ratings do not imply opening conditions; functional operation is not guaranteed. Beyond these values damage may occur.

Symbol	Parameter	min.	max.	Unit
V _{CC}	Supply voltage	-9.0	9.0	V
T _{amb}	Ambient temperature	-40	+125	°C

Features

- Based on the GiantMagnetor-Resistive (GMR) effect
- Flip-chip assembly
- Wide temperature range from –40°C up to +125°C

Advantages

- Large working distance
- Excellent absolute accuracy
- Large range of magnetic field strength
- Very small size
- Contactless field measurement

Applications

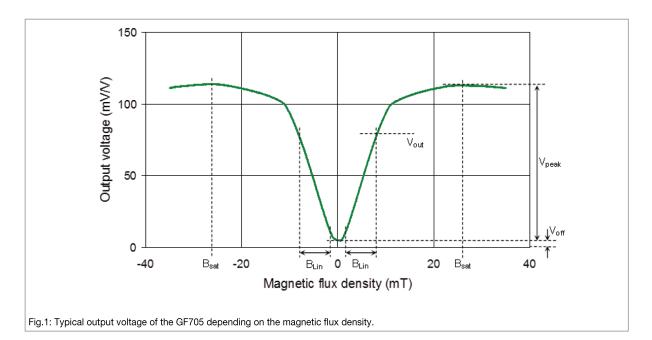
- End-point detection
- Reference monitoring
- Magnetic switches

Magnetic Data

Symbol	Parameter	Conditions	min.	typ.	max.	Unit
B _{LIN}	Linear magnetic flux density range (abs)	See Fig. 1	1.8	-	8.0	mT
B _{sat}	Saturation magnetic flux density 1)	See Fig. 1	-	±25.0	-	mT

 $^{^{1)}}$ At B_{sat} the sensor delivers the maximal output voltage V_{peak} . By exceeding the value B_{sat} the output signal is not longer unique.

Electrical Data


 T_{amb} = +25°C, unless otherwise specified

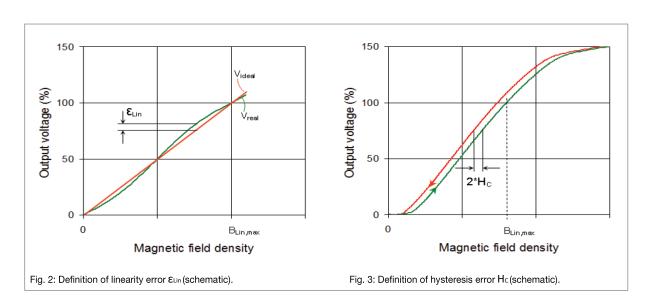
Symbol	Parameter	Conditions	min.	typ.	max.	Unit
V_{CC}	Supply voltage		-	5.0	-	V
S	Sensitivity	B = (1.88) mT	8	10	13	mV/V/ mT
TCs	Temperature coefficient of Sensitivity 2)	T _{amb} = (-40+125) °C	-0.26	-0.22	-0.18	%/K
R _B	Bridge resistance 3)		4.0	5.0	7.0	kΩ
TC _{RB}	Temperature coefficcient of RB 4)	T _{amb} = (-40+125) °C	0.17	0.20	0.23	%/K
V _{peak}	Maximum output voltage 5)	See Fig. 1	-	110	-	mV/V
V_{out}	Voltage output delta ⁶⁾ V _{OUT(3 mT)} - V _{OUT(0 mT)}	0 mT @90 deg 3 mT @0 deg	12.3	-	27.4	mV/V

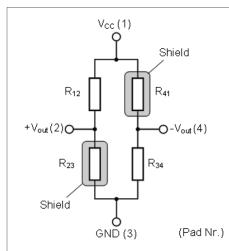
$$^{2)} \quad TC_{s}{=} \ 100 \cdot \frac{S_{(72)} \cdot S_{(71)}}{S_{(71)} \cdot (T_{2} - T_{1})} \quad \text{with } T_{1} = 25 \ ^{\circ}C; \ T_{2} = 125 \ ^{\circ}C,$$

⁴⁾
$$TC_{RB} = 100 \cdot \frac{R_{B(T2)} \cdot R_{B(T1)}}{R_{B(T)} \cdot (T_2 - T_1)}$$
 with $T_1 = 25 \,^{\circ}C$; $T_2 = 125 \,^{\circ}C$.

- 5) Maximal output voltage at B_{sat}.
- ⁶⁾ Parameter checked on 96 samples.

 $^{^{\}mbox{\tiny 3)}}$ Bridge resistance between pads 1 and 3 and 2 and 4.




Performance Data

 $T_{amb} = +25$ °C, unless otherwise specified

Symbol	Parameter	Conditions	min.	typ.	max.	Unit
V _{off}	Offset voltage per V _{CC}	See Fig. 1	-5.0	-	+5.0	mV/V
TC _{Voff}	Temperature coefficient of Voff	T _{amb} = (-40+125) °C	-20	7	+25	μV/V/K
E Lin	Linearity error	B = (1.88) mT; see Fig. 2	-	2	5	% of V _{out}
H _C	Hysteresis error 1)	See Fig. 3	-	0.05	0.1	mT

 $^{^{1)}}$ The hysteresis error is ascertained in the magnetic field, ramped from 10 mT to -10 mT and back to 10 mT. The value is specified for the linear range B_{Lin} .

In Fig. 4 the resistors R23 and R41 are covered by two flux concentrators (shields) to prevent an applied magnetic fi eld from influencing them. Therefore, when a fi eld is applied, the resistors R12 and R34 decrease in resistance, while the other two resistors under the fl ux concentrator do not. This imbalance leads to the bridge output.

Fig. 4: Simplified circuit diagram.

Bare die and Flip-Chip

Pinning

Pad	Symbol	Parameter
1	V _{CC}	Supply voltage
2	+V _{out}	Positive output voltage
3	GND	Ground
4	-V _{out}	Negative output voltage

Note:

Pin 1 is not marked on the chip. Since the chip is symmetrical, its orientation is only defi ned by its long and short side.

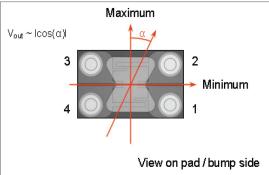
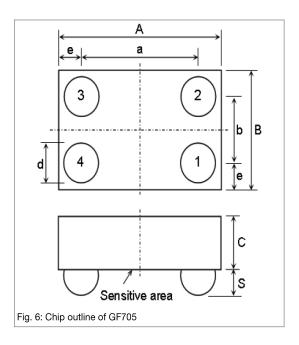



Fig. 5: Top: GF705 on its pad / bump side shown with the direction of its sensitivity. Bottom: Marked side of the flip-chip version only.

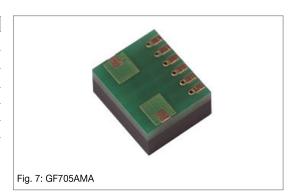
Mechanical Data

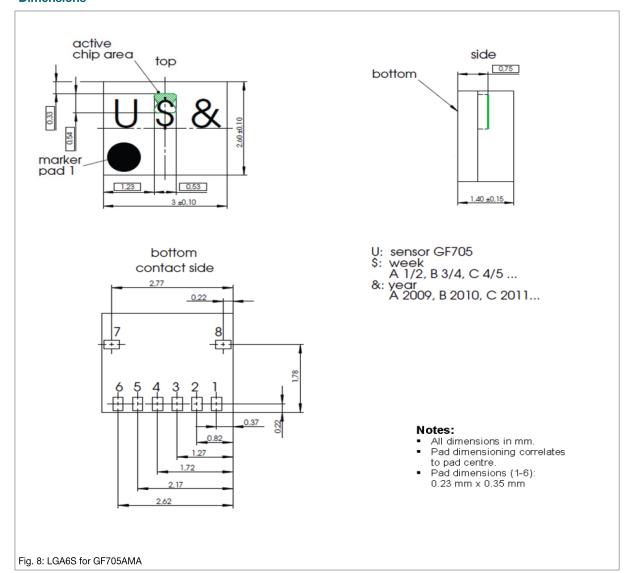
Symbol	Pai	rameter	min.	typ.	max.	Unit
Α		Length	1435	1460	1485	μm
В	die	Width	935	960	985	μm
С	Bare (Height	240	250	260	μm
d		Diameter	-	230	-	μm
Α		Length	1425	1460	1485	μm
В	ے	Width	935	960	985	μm
С	Flip-chip	Height	400	410	420	μm
d	∄	Diameter 1)	-	300	-	μm
S		Standoff 2)	-	240	-	μm
а		Pitch a	-	1000	-	μm
b		Pitch b	_	500	_	μm
е		Pitch c	_	230	-	μm

¹⁾ Diameter of solter balls before reflow

Data for Packaging an Interconnection Technologies

Symbol	Parameter	Conditions	Value	Unit
Bare die	Pad material		Au	-
Daile Gle	Pad thickness		0.4	μm
Flip obin	Solder ball material		SnAg2.6Cu0.6	-
Flip-chip	Maximum solder temperature	For 6 s	260	°C

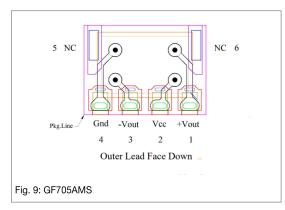

²⁾ After reflow

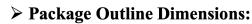

LGA6S

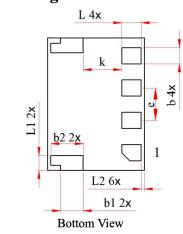
Pinning

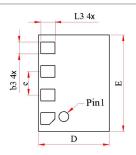
Pad	Symbol	Parameter		
1	+V _{out}	Positive output voltage		
2	NC	Not connected		
3	GND	Ground		
4	V _{CC}	Supply voltage		
5	-V _{out}	Negative output voltage		
6-8	NC	Not connected		

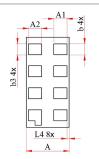
Dimensions




SIL4-D


Pinning


Pad	Symbol	Parameter
1	+V _{out}	Positive output voltage
2	V _{CC}	Supply voltage
3	-V _{out}	Negative output voltage
4	GND	Ground
5-6	NC	Not connected

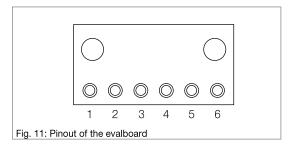


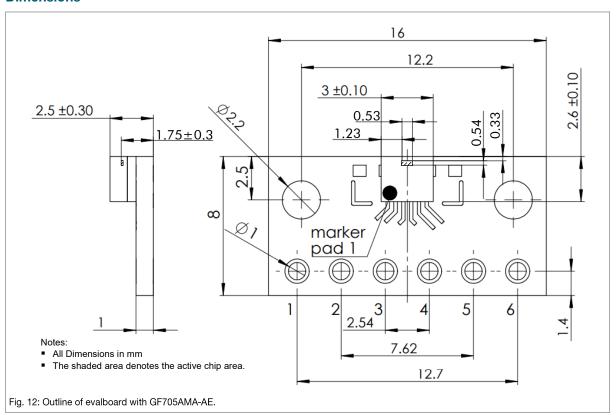
Dimensions

Top View

Side View

C b - 1	Dimens	sion In Mill	imeters	Dim	ension In In	iches
Symbol	Normal	Min	Max	Normal	Min	Max
A		0.950	1.050		0.037	0.0411
A1		0.220	0.350		0.009	0.014
A2		0.220	0.350		0.009	0.014
D	1.500	1.450	1.550	0.059	0.057	0.061
Е	2.050	2.000	2.100	0.081	0.079	0.083
b	0.250	0.200	0.300	0.010	0.008	0.012
b1	0.350	0.300	0.400	0.014	0.012	0.016
b2	0.500	0.450	0.550	0.020	0.018	0.022
b3	0.250	0.200	0.300	0.010	0.008	0.012
L	0.300	0.250	0.350	0.012	0.010	0.014
L1	0.230	0.180	0.280	0.009	0.007	0.011
L2	0.050	0.010	0.090	0.002	0.000	0.004
L3	0.300	0.250	0.350	0.012	0.010	0.014
L4	0.050	0.010	0.090	0.002	0.000	0.004
k	0.600 REF			0.024 REF		
e		0.500 BSC			0.050 BSC	


Fig. 10: SIL4-D for GF705AMS


Evalboard with GF705AMA-AE

Pinout

Pad	Symbol	Parameter
1	+V _{O1}	Positive output voltage bridge 1
2	+V _{O2}	Positive output voltage bridge 2
3	GND	Ground
4	V _{CC}	Supply voltage
5	-V _{O1}	Negative output voltage bridge 1
6	-V _{O2}	Negative output voltage bridge 2

Dimensions

General Information

Product Status

Article	Status
GF705ACA-AB	The product is in series production.
GF705APA-AB	The product is in series production.
GF705AMA-AE	The product is in series production.
GF705AMS-AS	The product is under development.
GF705 Evalboard	This product is for evaluation of the GF705AMA-AE sensor.
Note	The status of the product may have changed since this data sheet was published. The latest information is available on the internet at www.sensitec.com.

Disclaimer

Sensitec GmbH reserves the right to make changes, without notice, in the products, including software, described or contained herein in order to improve design and/or performance. Information in this document is believed to be accurate and reliable. However, Sensitec GmbH does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. Sensitec GmbH takes no responsibility for the content in this document if provided by an information source outside of Sensitec products. In no event shall Sensitec GmbH be liable for any indirect, incidental, punitive, special or consequential damages (including but not limited to lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) irrespective the legal base the claims are based on, including but not limited to tort (including negligence), warranty, breach of contract, equity or any other legal theory. Notwithstanding any damages that customer might incur for any reason whatsoever, Sensitec product aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the General Terms and Conditions of Sale of Sensitec GmbH. Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights. Unless otherwise agreed upon in an individual agreement Sensitec products sold are subject to the General Terms and Conditions of Sales as published at www.sensitec.com. The use and/or application of our products in a military end use is explicitly prohibited. In the event of infringements, we reserve the right to take legal action, including but not limited to the assertion of claims for damages and/or the immediate termination of the business relationship.

General Information

Application Information

Applications that are described herein for any of these products are for illustrative purposes only. Sensitec GmbH makes no representation or warranty - whether expressed or implied - that such applications will be suitable for the specified use without further testing or modification. Customers are responsible for the design and operation of their applications and products using Sensitec products, and Sensitec GmbH acno liability for any assistance with applications or customer design. It is customer's sole responsibility to determine whether the Sensitec product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's party customer(s). Customers should provide appropriate design and safeguards to minimize the risks associated with their applications and products. Sensitec GmbH does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using Sensitec products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). Sensitec does not accept any liability in this respect.

Life Critical Applications

These products are not qualified for use in life support appliances, aeronautical applications or devices or systems where malfunction of these products can reasonably be expected to result in personal injury.

Copyright © by Sensitec GmbH, Germany

All rights reserved. No part of this document may be copied or reproduced in any form or by any means without the prior written agreement of the copyright owner. The information in this document is subject to change without notice. Please observe that typical values cannot be guaranteed. Sensitec GmbH does not assume any liability for any consequence of its use.

Changelist

Version	Description of the Change	Date
GF705.DSE.14	Add evalboard	10/2025
GF705.DSE.13	Change of article description (p. 1 product overview) Add new product variant (GF705AMS)	05/2023
GF705.DSE.12	Various textual changes	07/2018
GF705.DSE.11	Various textual changes	04/2017
GF705.DSE.10	Change of corporate design (pp. 1-7)	05/2015
GF705.DSE.00	Original (pp. 1-7)	11/2006

Sensitec GmbH

Schanzenfeldstr. 2 • 35578 Wetzlar • Germany Tel +49 (0) 6441 5291-0 • Fax +49 (0) 6441 5291-117 sensitec@sensitec.com • www.sensitec.com