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Abstract: Simulations are an important tool in the development and design of magnetic sen-
sors. The disadvantage of these simulations lies in frequent assumption of perfect conditions, 
without considering production-related variations. Depending on the system, these variations 
can have a significant effect on the sensor output signals, leading to an offset between simu-
lation and reality. Running multiple simulations to cover all variations is often too time consum-
ing.  This weakness is addressed in this study.  

Machine learning techniques are used to train a model on production-related variations with 
simulated data. The model is then able to predict sensor signal deviations in real time based 
on the ideal signals. This allows designers to check their sensor design within the specified 
production variations without the need for additional time-consuming simulations.  

The approach is implemented using a virtual module of a supporting magnet and a GMR sen-
sor array called GLM712 from Sensitec GmbH. This type of sensor is used to detect the angle 
of rotation and speed of tooth structures without contact. A characteristic of this type of sensor 
technology is the need for a specific design depending on the geometry of the tooth structure. 
In the manufacturing of these sensors, there are variations in sensor position, orientation and 
the properties of the supporting magnet, which have been shown to affect the signal. These 
are the variations for which the machine learning model is trained. 

1. Introduction 

In the design and investigation of sensor systems, simulations are an essential tool for generating emu-
lated signals. Often, the required amount of data cannot be produced with the necessary level of variation 
using real-world measurements at a reasonable cost. Key system parameters, such as geometry, are 
fixed in real systems and can either not be varied at all or only with significant material and time expendi-
tures. 
A critical limitation of simulations is the assumption of ideal manufacturing conditions, ignoring production-
induced variations such as deviations in sensor positioning, orientation, and properties. In reality, manu-
facturing tolerances can cause significant discrepancies between simulated and actual sensor outputs, 
affecting system performance and reliability. 
One approach to address this limitation is to perform multiple simulations that account for all possible var-
iations, but this can also be extremely time-consuming and computationally intensive. This challenge 
highlights the need for efficient methods to predict and compensate for production-related variations in 
sensor outputs without relying on extensive simulation efforts. 
 
This paper introduces a machine learning (ML) based approach to predict sensor signal deviations 
caused by manufacturing tolerances efficiently. By training a model on data derived from ideal simulations 
augmented with systematic variations representing production tolerances, the approach enables real-time 
prediction of sensor performance under various manufacturing conditions. This methodology significantly 
reduces the reliance on extensive simulations and accelerates the sensor design and validation process. 
 
The proposed approach is validated using a simulated system of a soft magnetic gear, a magnet and a 
giant magnetoresistance (GMR) sensor array. In this specific use case, the gear rotates and modulates 
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the magnetic field provided by the magnet. The GMR sensor array, designated as GLM712 from the man-
ufacturer Sensitec GmbH, is placed between the magnet and the gear and detects the changes in mag-
netic field strength caused by the rotating gear. The sensor contains 16 GMR elements, which are config-
ured into two measurement bridges (where 2 GMR elements are connected together in series). The 
measurement bridge voltage is tapped at the sensor output, and two phase-shifted sinusoidal signals indi-
cate the rotational movement of the gear. Manufacturing-related deviations in the placement of the GMR 
elements and the properties of the magnet affect these signals.  
 
The study considers various gear geometries and systematically incorporates manufacturing tolerances 
of the sensor-magnet-subsystem into the simulation data. An Extreme Gradient Boosting (XGBoost) 
model is trained and optimized to predict the impact of these variations to the sensor signals accurately. 
The results demonstrate the model's effectiveness in maintaining high prediction accuracy while offering 
substantial reductions in simulation time and computational resources. 

2. Related Work and Applications 

The integration of ML techniques with traditional simulation methods has emerged as a powerful strategy 
in enhancing predictive modeling across various engineering domains. This hybrid approach addresses 
limitations associated with both data limitations and high computational costs, offering improved accuracy 
and efficiency in complex system analyses. 
Several studies have demonstrated the effectiveness of combining simulation with ML for fault detection 
and system diagnostics. For instance, Gao et al. (2021) proposed a hybrid method that integrates Finite 
Element Method (FEM) simulations with Generative Adversarial Networks (GANs) to generate additional 
fault samples, thereby improving classification accuracy in rotor-bearing systems [GLHX21]. This ap-
proach effectively leverages simulated data to compensate for the lack of real-world fault data, enhancing 
the robustness of the diagnostic model. 
Liu et al. (2020) introduced a personalized diagnosis method employing FEM simulations to create train-
ing datasets for Support Vector Machine (SVM) models, enabling accurate fault detection in mechanical 
components despite limited available fault data [LiHX20]. This method underscores the critical role of sim-
ulation in supplementing ML models when empirical data is insufficient or challenging to obtain. In ad-
dressing computational efficiency, Ahamed and Uddin (2023) presented a two-step ML framework that 
reduces the dependence on extensive simulations for exploring complex physical systems. By initially 
training on a limited set of high-fidelity simulations and subsequently refining predictions through ML mod-
els, this approach achieves substantial reductions in computational time without compromising accuracy 
[AhUd23]. Furthermore, Wang et al. (2022) investigated the application of ML models trained on simula-
tion data for fault detection in gear mechanisms. Utilizing a lumped parameter model to generate training 
samples, the study achieved near-perfect accuracy in fault classification, demonstrating the practicality 
and effectiveness of integrating simulation data with advanced learning algorithms in real-world applica-
tions [WaYX22]. 
 
Despite these advancements, limited research has focused specifically on predicting production-induced 
variations in sensor outputs using ML. Existing studies primarily address fault detection and general sys-
tem diagnostics but do not extensively explore manufacturing tolerances' impact on sensor performance. 
This research aims to fill this gap by developing a ML model tailored to predict sensor signal deviations 
resulting from production-related variations, thereby enhancing the accuracy and efficiency of sensor de-
sign and validation processes. 

3. Methods 

This chapter outlines the approaches and tools employed to simulate, analyze, and model the behavior of 
a GMR sensor under varying manufacturing tolerances, providing a comprehensive framework for data 
generation, feature extraction, and ML model development. 

3.1 Simulation Software 

GMR sensor design relies on simulation techniques, particularly the Finite Element Method (FEM), to cal-
culate an approximation of a magnetic field and to predict sensor behaviour under different operational 
scenarios [ReCR09]. The simulations in this study are carried out by a software developed at the 
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University of Kaiserslautern-Landau (RPTU) in cooperation with Sensitec GmbH1. The software is capa-
ble of calculating the magnetic field for different geometric problem settings with various hard-magnetic 
objects. Additionally, virtual versions of the GMR sensor array and the Hall sensor are included, which 
compute the sensor output signals based on the approximated magnetic field. 
 
In this software, the geometric description of the three-dimensional system geometry is carried out using 
the methods of Constructive Solid Geometry (CSG). A major advantage of CSG is its automatability 
through algorithms. A function created once for generating a specific geometry can produce any number 
of similar geometries by adjusting its parameters. For example, arbitrary gear geometries can be gener-
ated by specifying just a few parameters, such as diameter, length, number of teeth, tooth height, and 
tooth width. 
To calculate the magnetic field, the weak form 

∫ (∇⃗⃗ × 𝐴 ) ⋅ (∇⃗⃗ × 𝑣 )𝑑Ω = 𝜇
Ω

∫ 𝑀⃗⃗ ⋅ (∇⃗⃗ × 𝑣 )𝑑Ω
Ω

 

of the magnetostatic boundary value problem  

Δ𝐴 = −𝜇∇⃗⃗ × 𝑀⃗⃗  

is formulated and solved for the described geometry, where 𝐴  is the vector potential, 𝑀⃗⃗  is the magnetiza-

tion, 𝜇 is the magnetic permeability, and 𝑣   is the test function within the bounded domain Ω. 
The boundary conditions are set as Neumann boundary conditions 

𝜕𝐴 

𝜕𝑛⃗ 
= 0 

where 𝑛⃗  is the normal vector. 
 
 
For performing the calculations, a powerful software package is used. NGSolve, developed at the TU 
Wien (Vienna) and other universities, provides extensive functionalities for finite element method (FEM) 
computations in mechanics, fluid dynamics, and electromagnetics [Schö14]. 
 
An integral part of the package is a 2D/3D mesh generator called NETGEN [Schö97]. It automatically 
generates the required mesh for FEM calculations based on the described CSG geometry. The mesh 
consists exclusively of first-order tetrahedral elements with a maximum edge length of ℎ. 
 
The generated mesh enables the L2-projection of the continuous problem into a discrete system. The re-
sulting linear system of equations is preconditioned and solved iteratively using the gradient descent 
method, until a configurable error tolerance threshold is met, yielding the approximation of the vector po-

tential 𝐴 ℎ. 
 
The final result is the numerically computed magnetic flux density and field strength 

𝐵⃗ ℎ = ∇⃗⃗ × 𝐴 ℎ und 𝐻⃗⃗ ℎ =
1

𝜇
∇⃗⃗ × 𝐵⃗ ℎ − 𝑀⃗⃗ ℎ. 

 

The calculated magnetic field serves as the basis for designing the virtual GMR sensor array. Fig. 1 and 

Fig. 2 illustrate a simplified structure and a simplified circuit diagram of the sensor, where two of the 16 
elements connected in series have already been combined into one element. 
 

 

Fig. 1: Simplified arrangement of the GMR ele-
ments 

 
1 https://doi.org/10.5281/zenodo.8414074 

 

Fig. 2:  Circuit diagram of the GMR elements
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The sensor output signals are labeled as 𝑈𝑠𝑖𝑛 and 𝑈𝑐𝑜𝑠. These names arise from the 90° phase shift be-
tween the two signals, resulting from the arrangement. 
GMR elements change their electrical resistance depending on the applied magnetic field in the direction 

of 𝐻⃗⃗  in Fig. 1. The relationship between resistance and magnetic field strength is described by a charac-
teristic curve 

𝑅𝑖 = −1,26 ⋅ 10−6Ω ⋅  𝐻⃗⃗ 𝑖
ℎ ⋅

𝑚

𝐴
+ 1,442Ω 

where 𝑅𝑖 is the resistance of the GMR element 𝑖 ∈ 1…8 and 𝐻⃗⃗ 𝑖
ℎ is the approximated magnetic field 

strength affecting the element. In this study, the characteristic curve is provided in a linearized form only. 
The actual characteristic curve is a trade secret of Sensitec GmbH and was available for this study. 
 
According to the bridge circuits shown in Fig. 2, the sensor output signals are calculated as 

𝑈𝑠𝑖𝑛 = (
𝑅5 + 𝑅6

𝑅1 + 𝑅2 + 𝑅5 + 𝑅6

−
𝑅1 + 𝑅2

𝑅1 + 𝑅2 + 𝑅5 + 𝑅6

) ⋅ 𝑈0 

𝑈𝑐𝑜𝑠 = (
𝑅3 + 𝑅4

𝑅3 + 𝑅4 + 𝑅7 + 𝑅8

−
𝑅7 + 𝑅8

𝑅3 + 𝑅4 + 𝑅7 + 𝑅8

) ⋅ 𝑈0 

 
where 𝑈0 is the supply voltage. 

3.2 Collection of Measurement Data including Manufacturing Tolerances 

Using the simulation software in the previous section, simulations were carried out to record the signal 
deviations in the case of deviations in the sensor/magnet system. Fig. 3 illustrates a simplified section of 
the simulation space. The relevant gear dimensions, such as tooth height, tooth width, and the circle di-
ameter, are also depicted in the figure, which provides a basis for understanding the parameterized ge-
ometry. 

  

Fig. 3: Simplified section of the simulation domain illustrating the spatial arrangement of the sen-
sor and gear relative to the coordinate system. 

 
To generate a diverse dataset, 250 unique gear geometries were created by systematically varying the 
gear parameters listed in Tab. 1. For each gear, 10 samples were selected from random magnetic field 
rotations within the limits specified in Tab. 1. This results in 2,500 unique combinations of gear geometry 
and magnetic field configuration. The parameters for gear geometry and the magnetization direction of 
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the support magnet were determined using the Latin Hypercube Sampling (LHS) strategy, which ensures 
a uniform distribution of sample points across the parameter space by dividing the parameter range into 
small segments and taking random samples from each segment [Loh96]. This approach ensures that no 
areas of the parameter space are over- or underrepresented, thereby improving data quality. 
 

The training dataset comprises 2,500 unique samples. To ensure comprehensive parameter space cover-
age and reliable evaluation, an additional 250 gear-magnet combinations were simulated the specified 
parameter range. These simulations were used exclusively for testing, preserving the integrity of the train-
ing dataset during model development. 

Tab. 1: Parameters describing the gear geometrics, magnetization and sensor position. 

Variables Range Description 

𝑛 𝟐𝟔 …  𝟏𝟐𝟖 Number of teeth. 

𝑑 𝟏𝟔, 𝟓𝟓𝒎𝒎 …  𝟖𝟏, 𝟒𝟗𝒎𝒎 Pitch circle diameter of the gear. 

𝑠𝑝 𝟎, 𝟒𝒎𝒎 …  𝟏, 𝟑𝟑𝒎𝒎 Width of a tooth. 

ℎ 𝟎, 𝟓 𝒎𝒎 …  𝟐, 𝟎 𝒎𝒎 Height of a tooth. 

∆Θ𝑥  ±𝟓° Angle of rotation of the magnetic field around the 𝒙-axis. 

∆Θ𝑦 ±𝟓° Angle of rotation of the magnetic field around the 𝒚-axis. 

𝑡 𝟎, 𝟒 𝒎𝒎 Distance between GMR sensor and tooth surface. 

∆𝑥 ±𝟐𝟎𝟎µ𝒎 Offset of the GMR sensor along the 𝒙-axis. 

∆𝑦 ±𝟏𝟎𝟎µ𝒎 Offset of the GMR sensor along the 𝒚-axis. 

∆𝜑𝑧  ±𝟏° Rotation of the GMR sensor around the 𝒛-axis. 

 
The training dataset is divided into training and validation data, with 80 % used as training data and 20 % 
as validation data. The validation dataset is used during model training to monitor performance and adjust 
the model's parameters, such as the weights, in order to optimize the learning process. To increase the 
training quality and numerical stability, the data is scaled to the 0 to 1 range using a min-max-scaler. 
 

3.3 Signal and Parameter Analysis 

The selection of suitable characteristics is an important step in the development of the model. Systemati-
cally varying specific tolerance parameters and analysing the sensor signals enables a deeper under-
standing of the system and creates the knowledge base for defining the model architecture and selecting 
relevant features. 
 
Signal Analysis 
 
To analyse the sensor signals, which resemble near-perfect sinusoidal signals, Fourier Transformation 
(FT) is employed to decompose the signals into their frequency components. This decomposition enables 
the identification of key features that are essential for understanding the sensor's behaviour under varying 
manufacturing tolerances. Specifically, the analysis focuses on the following features: 
 

• Dominant amplitude: The magnitude of the largest amplitude, corresponding to the primary os-

cillation in the signal, is extracted to ignore potential noise and assess whether the amplitude 

exceeds predefined threshold values critical for sensor design and modeling. Higher-order har-

monics are not considered, as their contribution is minor, and including them would unneces-

sarily increase the model's complexity. 

• Average value: The mean signal level, which provides information on baseline shifts that may 

arise due to manufacturing deviations. 

These features are selected to capture the most significant aspects of the signal's behaviour, facilitating a 
reduction in model complexity while preserving the essential information. By analysing these attributes, 
insights are gained into how specific manufacturing deviations influence the sensor's performance, 
thereby guiding the selection of relevant input variables for the subsequent ML model. 
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Parameter Analysis 
 
The influence of the system parameters is analyzed before building the ML model. A correlation analysis 
is performed to locate and remove redundant parameters. This allows the complexity of the model to be 
reduced without adversely affecting the performance of the model. 
Fig. 4 shows the correlation matrix with a reduced set of parameters from the dataset created for analy-
sis. The values indicate the linear dependence between the parameters, with +-1 indicating positive/nega-
tive linear co-dependence, while 0 indicates no dependence at all. The results show a strong dependence 
between the diameter 𝑑 and the number of teeth 𝑛. As the parameters are coupled via the fixed pitch of 
2mm, the result was to be expected. Furthermore, a strong negative correlation of was observed between 
the signal averages 𝑎0 of the sine and cosine signals. This indicates a mirrored behavior of the sensor 
signal averages, which reflects the symmetrical structure of the sensor.  
In addition, a strong correlation between 𝑎0 and the parameters 𝑛 and 𝑑 was observed. This correlation 
arises because smaller radii cause a stronger deflection of the magnetic field lines due to the gear solid, 
which increases the signal average.  
The amplitudes 𝐴1,𝑠𝑖𝑛 and 𝐴1,𝑐𝑜𝑠 are correlated to the tooth width 𝑠𝑝. Basically, they result from the transi-

tion of the teeth beneath the sensor. Since reducing the tooth width 𝑠𝑝 while keeping the pitch constant 

increases the size of the gap, the amplitudes of the sensor signal are affected. The 100% correlation be-
tween the amplitudes is due to the aforementioned mirror symmetry of the magnetic field lines and GMR 
sensor.  
 
It is important to note that changes to the measurement system require a new correlation analysis, as cor-
relation does not prove causality. 
 

  

Fig. 4: Correlation matrix of a reduced set of parameters to find redundant information in the data. 

3.4. Machine Learning Model Selection 

Since the model is intended to predict the deviation in maximum amplitude and signal average between 
ideal and tolerance-affected sensor signals, as shown in Fig. 5, a regression model is required to be ro-
bust to the limited amount of simulation data. Simultaneously, the model should be capable of handling 
complex and nonlinear relationships between input and output values. Therefore, this study employs an 
Extreme Gradient Boosting (XGBoost) model [ChGu16].  
 
XGBoost is a decision-tree-based model that iteratively adds new trees in a round-based manner to mini-
m  e t e m  el’  err r. It  well-documented advantages make it particularly suited for this application. 
Important characteristics of XGB are [ChGu16]: 
 

• Efficient handling of structured data and numerical features. 

• Resistance to overfitting through regularization techniques. 
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• Fast training and prediction times. 

• Capability to capture intricate interactions between input variables. 

 

 

Fig. 5: The impact of variations in production-related parameters on sensor signals. The numerical pa-
rameters 𝛥𝐴 and 𝛥𝑎0 are the model's target variables. 

3.5 Hyperparameter Optimization 

To improve the prediction performance of the XGBoost model, the hyperparameters are tuned using the 

Randomized Search method from the sklearn.model_selection library [BeBe12]. This approach enables 

the specification of bounds for each hyperparameter based on prior knowledge. Specifically, the hyperpa-

rameters are varied as shown in Tab 2. 

Tab 2: Overview of the model's hyperparameters and their descriptions. 

Hyperparameter Description 

Number of Estimators The number of trees used in the model. 

Learning Rate Controls the weighting of the added trees after each training round. 

Maximum Tree Depth The maximum depth of each decision tree. 

Subsample Ratio The fraction of the training data used for growing each tree. 

L1 Regularization The L1 penalty applied to the weights to increase robustness. 

L2 Regularization The L2 penalty applied to all weights ensures numerical stability. 

 

Within the defined bounds, randomly generated combinations of these hyperparameters are applied over 

a limited number of training iterations, following predefined step sizes. The performance of these combi-

nations is evaluated by calculating prediction accuracy using standard error metrics such as mean 

squared error. This process allows the design of a pre-optimized model architecture tailored to the da-

taset, which is then employed for comprehensive training. Subsequently, the optimized model is evalu-

ated on an unseen test dataset to assess its generalization capacity and prediction accuracy in estimating 

sensor signal deviations caused by manufacturing tolerances. 

To reduce the risk of overfitting and to avoid unnecessary additional trees, the early stopping method is 

used. With this method, the training process can be stopped if no further improvements in the form of er-

ror reduction can be detected after a predefined number of iterations. 

4. Results and Discussion 

This chapter presents a comprehensive analysis of the effects of production-related deviations on the 
sensor signal, followed by the optimization of the model architecture using a hyperparameter random 
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search algorithm. Subsequently, the model training is evaluated, and its performance on unseen data is 
tested. Finally, the findings of the study are summarized, and the applicability of the model in practical 
scenarios is proposed. 

4.1 Impact of Manufacturing Tolerances on the Signal Response 

In order to achieve a better understanding of the system, it is necessary to analyze the effect of produc-
tion-related deviations in the sensor/magnet system on the sensor signal. In this section, simulation data 
representing systematic deviations within the specified tolerance limits is analyzed. 
 
Sensor Offset in the 𝒙-Direction 
 
When the sensor is shifted in the 𝑥-direction, two effects are expected to occur. Firstly, a phase shift is to 
be expected, but at this stage of the sensor design the only concern is to ensure that the maximum signal 
peaks, defined by level and amplitude, remain within the desired range. Secondly, the curvature of the 
gearwheel is expected to have an effect. The greater the curvature, the greater the effective distance be-
tween the sensor array and the tooth structure when the sensor array is displaced. An analysis of this 
phenomenon revealed that displacements in the horizontal direction have a greater effect on the signal 
average and amplitude for the smallest gear in the dataset than for the largest gear, by a factor of about 
10. Since the model is designed to distinguish between the optimal sensor position and the sensor posi-
tion constrained by tolerances, it is essential to evaluate different positions first. 
The signal is expected to have the greatest amplitude when the sensor is centered. However, this expec-
tation is not confirmed by the data, as shown in Fig. 6. Instead, the maximum values for signal average 
and amplitude are slightly off center. This phenomenon can be attributed to the configuration of the GMR 

elements as illustrated in Fig. 1. The center points of the GMR elements for the sine and cosine signal do 
not correspond to the center point of the sensor array. 
 
 

  
Fig. 6: The effect of sensor displacement ∆𝑥 on signal amplitude and average. 
 
Sensor Offset in the 𝒚-Direction 
 
Moving the sensor array in the positive 𝑦-direction is expected to have the same effect as a gain in the 
working distance between the sensor magnet system and the tooth structure. The only difference is the 
constant position of the supporting magnet. Therefore, moving the sensor in the 𝑦-direction will result in 
an increase or decrease in the distance between the tooth structure and the GMR elements. This results 
in a significant change in the amplitude and average as shown in Fig. 7. It is noticeable that the curves for 
the average and amplitude have a nearly linear character in the considered range. 
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Fig. 7: The effect of sensor displacement ∆𝑦 on signal amplitude and average. 

 
Angles of Magnetization 
 
In order to understand the influence of different magnetization angles on the sensor signal, a deep under-
standing of the interaction between GMR and magnetic field is necessary. However, this is not the subject 
of this work, as it is mainly concerned with modeling. In this context, it is important to know that the GMR 
sensor is sensitive to magnetic fields in the direction of the sensor-plane (horizontal plane). Since a rota-
tion of the magnetic field changes the resulting magnetic field strength in horizontal direction, a change in 
the signals is recognizable. The range for the magnetization direction is specified as ±5° in each spatial 
direction of the coordinate system. Since the support magnet in this case is magnetized in the 𝑧-direction 
under perfect conditions, all rotation angles around the z-axis can be described by a combination of rota-
tions around the 𝑥-axis and around the 𝑦-axis. For this reason, rotation angles around the 𝑧-axis are not 
considered. Fig. 8 shows the effects of deviating magnetization. It is noticeable that the behavior differs 
for rotation angles around the 𝑥-axis and around the 𝑦-axis. While rotations around the 𝑥-axis have a lin-

ear effect on amplitude and signal average, rotations around the 𝑦-axis have a non-linear character. Fur-
thermore, the intensity with which the respective rotation influences the sensor signal differs. For exam-
ple, a rotation around the 𝑥-axis has a factor of 10 greater effect than a rotation around the 𝑦-axis. The 

difference is even greater for the amplitude, where rotations around the 𝑥-axis have a factor of 26 greater 
influence. 
 
 
Sensor Rotation around the 𝒛-axis 
 
As demonstrated in Fig. 9, the rotation of the sensor array influences the sensor signal, leading to a linear 
change in signal amplitude with varying rotation angles. However, the signal average follows a cubic 
trend with inflection points at 0° rotation, corresponding to the sensor being exactly horizontal in space. 
This behavior can be attributed to the specific configuration of the GMR elements along the sensor axis, 
where each pair of elements is aligned vertically. As the inner GMR elements 3 and 4 are positioned on 
t e       te    e  f t e  e   r’   e ter relat ve t  t e  uter eleme t    a    , r tat       rea e  t e    -
tance of the outer elements from the tooth surface while simultaneously decreasing the distance of the  
inner elements. This results in a rotation of the effective horizontal field components acting on each ele-
ment and height differences between inner and outer GMR elements. Since the magnetic field strength 
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decreases with increasing distance from the tooth surface, these height variations further contribute to the 
observed signal changes.  

 

Fig. 8: The influence of magnetization angle deviations Θ𝑥 and Θ𝑦 on signal amplitude and average. 

 
The increase in the sine signal amplitude and the simultaneous decrease in the cosine signal amplitude 
can therefore be attributed to both the lateral displacement of the GMR elements within the sensor array 
and the height-dependent modulation of the effective field.  
 

 

Fig. 9: The effect of sensor rotation ∆𝜑𝑧 on signal amplitude and average. 
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4.2 Model Performance and Architecture 

This section evaluates the performance of the model. First, the parameters obtained from the hyperpa-

rameter search are presented. This gives an overview of the architecture of the model and shows the ex-

tent of regularization used. The training results are presented afterwards, followed by an evaluation on 

unknown data, which allows the generalizability of the model to be assessed. Finally, the results of this 

work are categorized and possible applications of the model are discussed. 

Hyperparameters and Architecture 

Tab. 3 presents the results of the hyperparameter search. The model initially consists of fifty thousand 
trees with a depth of 3. Since the model training employs an early stopping method, this number may be 
reduced in the final model. Another important observation from the table is the learning rate, which is set 
to 0.01. However, it also implies a higher need for additional trees to converge, which could lead to over-
fitting. This indicates the importance of stopping early. 

Tab. 3: Optimized Hyperparameters from Randomized Search Method. 

Hyperparameter Value Search Range 

Number of Estimators 50000     … 75000 

Learning Rate 0,013  ,   …  ,   

Maximum Tree Depth 3   …    

Subsample Ratio 0,8  ,  …   

L1 Regularization 0,1 0 …   

L2 Regularization 6 0 …    

Furthermore, the hyperparameter search identified a subsample ratio of 0.8, indicating that 80% of the 
training data is used for building each tree. This helps balancing between model robustness and compu-
tational efficiency. Regarding regularization, the L1 regularization parameter is set to 0.1, which promotes 
a certain degree of sparsity in the model structure. In contrast, the L2 regularization parameter is set to 6, 
enforcing stronger penalties on large coefficient values to improve model stability and reduce overfitting 
risks [ChGu16].  

Model Performance 

Before evaluating the model, the analyzing of the training results provides valuable insights. In addition to 

the familiar metrics such as the mean squared error, this also includes recognizing whether or not the 

number of additional trees has been reduced by using early stopping. A significant deviation in the num-

ber of trees may indicate a problem with the optimized hyperparameters found by the search algorithm. 

Experience has shown that an excessive deviation between the optimum number of trees and the number 

of trees from the hyperparameter search indicates that the hyperparameter search has not found the opti-

mum configuration. In such a case, the limits and the number of iterations in the hyperparameter search 

are adjusted and this is carried out again. In the case of this model, the search determined an initial tree 

number of 50000 and the early-stopping algorithm cancelled the training after 46625 rounds. The differ-

ence between the two values indicates no need for change. 

Another important information is the relevance of the parameters during model training, which can be 

seen in Fig. 10. The parameter ∆𝒚 was almost twice as useful for model prediction as the next most im-

portant parameter. The parameter 𝚯𝒚, which represents the rotation of the magnetic field around the 𝒚-

axis, has the least benefit for the model. This information is consistent with the analysis from Section 4.1. 

To evaluate the model training, the mean squared error was documented after each training lap. By look-

ing at this metric, it is possible to assess whether the model is converging during training, or whether the 

model is struggling to recognize the relationships and patterns in the dataset. The model from this work 

achieved a R2 score of 0.9978 on the training data, which indicates a high model quality. However, in 
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order to make more precise statements about the model performance, it is necessary to apply the model 

to unknown data.  

 

Fig. 10: Parameter relevance shows how important a particular parameter was to the model during train-
ing. 

Model Performance when Using Unknown Data  

The test dataset used for this project was created from new randomly generated simulations within the 

specified limits for the production-related deviations. The evaluation metric used was the percentage devi-

ation from the actual values and the predicted values. The model was therefore able to achieve the devia-

tion between the ideal sensor signal and the tolerance-based sensor signal with an average accuracy of 

99.61 %. In order to view the model performance from a different angle, a parity plot is shown in Fig. 11.  

The model was able to determine the deviation of the amplitude more accurately than the deviation of the 

signal average.  

  

Fig. 11: Parity Plot of the model.  
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 4.3 Outlook and Applications 

The objective of this study was to develop an ML-based model to predict the effects of production-related 
deviations on the performance of simulated sensor signals. To achieve this, simulated training data was 
generated using FEM simulations. The study included a detailed analysis of the influence of manufacturing 
tolerances on the sensor signal, an evaluation of the correlations between parameters using a correlation 
matrix, and the development and implementation of an XGBoost model. Model validation on previously 
unseen data showed that the target parameters (signal average deviation and signal amplitude deviation) 
can be predicted with an average accuracy of 99.61%. The results also indicate that the model has a higher 
prediction accuracy for signal amplitude deviation than for signal average deviation in the considered use 
case. 

These results demonstrate the potential of using ML models to approximate computationally intensive FEM 
simulations and to quantify the influence of manufacturing tolerances on sensor performance. The ap-
proach developed enables sensor designers to estimate the effect of manufacturing variations during the 
design phase and to reduce the need for time-consuming FEM simulations. This allows for more efficient 
optimization of sensor placement and parameters. However, further investigations are required to test the 
extrapolation capability of the model. 
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